5 FASA PEMBANGUNAN

5.1 GAMBARAN KESELURUHAN

RUJUKAN PROSES PENGGUNAAN MODEL DAN METODE SERAHAN

Spesifikasi + Dokumentasi
Reka Bentuk Mula Pangkalan
Sistem . Data
spesifikasi ¢ Laporan
Migrasi Data Ujian Slstem
Spesifikasi v v A 4
Integrasi b
Sistem Pembangunan Pengaturcaraan .. ;
Pangkalan Data Aplikasi Femgelign Sisem
v

Rajah 5.1 : Gambaran Keseluruhan Fasa 4 - Pembangunan

5.2. PENGENALAN

Fasa pembangunan merupakan fasa yang sangat penting dalam Kitar Hayat Pembangunan
Sistem (SDLC) di mana pada fasa inilah bermulanya aktiviti pembinaan sistem aplikasi yang
ingin dibangunkan. Pada fasa ini, keperluan dan reka bentuk fungsi-fungsi sistem yang akan
dibangun telah pun dimuktamatkan. Pelaksanaan aktiviti-aktiviti dalam fasa ini memerlukan
kerjasama erat antara pasukan pembangunan bagi memastikan setiap modul berfungsi
dengan baik dan selaras dengan spesifikasi yang telah ditetapkan.

Matlamat utama fasa ini ialah untuk menterjemah dan merealisasikan Spesifikasi Reka Bentuk
Sistem (SDS), Spesifikasi Migrasi Data, serta Spesifikasi Integrasi Sistem yang dihasilkan
dalam fasa reka bentuk ke dalam kod pengaturcaraan menggunakan teknologi yang telah
dipilih. Selain itu, fasa ini turut melibatkan pelaksanaan pengujian sistem bagi memastikan
sistem yang dibangunkan bebas daripada sebarang ralat, berfungsi sepenuhnya, dan
memenuhi keperluan pembangunan sebenar. Proses ini memastikan sistem mencapai kriteria
kualiti yang ditetapkan serta meningkatkan tahap keyakinan pengguna terhadap produk yang
dihasilkan.



Tiga (3) aktiviti utama dalam Fasa Pembangunan adalah seperti berikut:

a)
b)

c)

Pembangunan Pangkalan Data
Pengaturcaraan Aplikasi

Pengujian Sistem

Dokumen Rujukan kepada Fasa Pembangunan adalah seperti berikut:

a)
b)

c)

D05 Spesifikasi Reka bentuk Sistem
D06 Spesifikasi Migrasi Data
D07 Spesifikasi Integrasi Sistem

Dokumen Serahan kepada Fasa Pembangunan adalah seperti berikut:

a)
b)

D08 Dokumentasi Pangkalan Data

D09 Laporan Ujian Sistem

5.3 PENGLIBATAN PEMEGANG TARUH

Pemegang taruh utama yang terlibat dalam fasa pembangunan adalah Pengaturcara, Penguiji
dan Juruanalisis Sistem. Pengaturcara bertanggungjawab dalam penulisan kod
pengaturcaraan berdasarkan kepada reka bentuk yang telah disediakan, manakala penguiji
memastikan setiap modul yang dibangunkan berfungsi dengan betul dan bebas daripada ralat.

Cadangan penglibatan kategori pemegang taruh adalah seperti berikut:

a)

b)

c)

Pengaturcara yang bertanggungjawab menulis, membangunkan, dan menguiji
kod pengaturcaraan berdasarkan reka bentuk sistem yang telah disediakan.

Penguji yang berperanan menjalankan ujian sistem bagi memastikan setiap fungsi
beroperasi dengan betul serta bebas daripada ralat sebelum sistem diserahkan
untuk digunakan.

Juruanalisis Sistem yang bertanggungjawab untuk memberikan penerangan
serta menjadi pakar rujuk kepada pasukan pengaturcara mengenai reka bentuk
sistem yang telah dihasilkan, selain menjadi penghubung di antara pasukan
pembangunan dan pihak berkepentingan lain untuk memastikan pelaksanaan
pembangunan mengikut keperluan dan spesifikasi yang ditetapkan.

Pengurus Projek yang memastikan penyelarasan, pemantauan kemajuan, serta
pematuhan kepada skop dan jadual projek bagi menjamin keberhasilan proses
pembangunan.



5.4 FAKTOR KEJAYAAN

Untuk memastikan aktiviti pembangunan berjaya dilaksanakan, faktor-faktor kejayaan
utama yang perlu dipertimbangkan sebelum dan semasa aktiviti dilaksanakan adalah
seperti berikut:

a)

b)

c)

d)

f)

D05 Spesifikasi Reka Bentuk Sistem (SDS) adalah lengkap dan perlu
mendapatkan pengesahan pemegang-pemengang taruh yang terlibat.

Pasukan pengaturcara berupaya menterjemahkan SDS kepada kod dan logik
pengaturcaraan, mempunyai kemahiran dan kepakaran dalam bahasa
pengaturcaraan yang telah ditetapkan.

Juruanalisis sistem berkemampuan memberikan penerangan dan menjadi pakar
rujuk pasukan pengaturcara mengenai reka bentuk sistem yang telah dihasilkan,
dan menjadi penghubung antara pasukan pembangunan dan pihak
berkepentingan lain.

Bilangan pengaturcara yang mencukupi dan bersesuaian dengan jangka masa
pembangunan.

Kelengkapan fools dan persekitaran pembangunan yang sempurna.

D08 Dokumentasi Pangkalan Data dan D09 Laporan Ujian Sistem disemak dan
mendapat pengesahan pemegang-pemegang taruh yang ditetapkan oleh
organisasi.



5.5 PEMBANGUNAN PANGKALAN DATA [F4.1]

5.5.1 PENGENALAN

Pembangunan pangkalan data adalah proses membina pangkalan data fizikal berdasarkan
reka bentuk logikal dan seni bina pangkalan data yang telah dirancang. Proses ini melibatkan
pembangunan struktur data yang sesuai bagi memastikan data dapat disimpan, dicapai, dan
diurus dengan cekap.

Model data fizikal pula menentukan bagaimana data disusun, disimpan, dan dicapai dalam
sistem pangkalan data. Pembangunan model data ini bergantung kepada jenis pangkalan data
yang dipilih, sama ada Pangkalan Data Hubungan (Relational Database Management System,
RDBMS), Pangkalan Data NoSQL, atau Pangkalan Data Berorientasikan Objek (OODBMS).
Pemilihan model yang bersesuaian bergantung kepada keperluan sistem dan jenis data yang
dikendalikan.

Pembangunan Pangkalan Data dilaksanakan oleh Pentadbir Pangkalan Data atau lebih
dikenali sebagai Database Administrator (DBA). Terdapat beberapa bahasa pengisytiharan
yang boleh digunakan untuk membangunkan pangkalan data seperti contoh yang berikut:-

a)  Structured Query Language (SQL) — digunakan pada Pangkalan Data Hubungan
(RDMS) seperti MySQL, PostgreSQL, MariaDB, dan ORACLE bagi tujuan
manipulasi dan pengurusan data;

b)  MongoDB Query Language (MQL) dan Cassandra Query Language (CQL) — yang
digunakan pada pangkalan data NoSQL seperti MongoDB dan Apache
Cassandra.

Buku panduan ini hanya mengkhususkan kepada pembangunan Pangkalan Data Hubungan
(RDBMS) dan Pangkalan Data NoSQL sahaja.

5.5.2 OBJEKTIF
Membangunkan pangkalan data fizikal RDBMS dan NoSQL untuk pembangunan sistem.

5.5.3 LANGKAH-LANGKAH PEMBANGUNAN PERISIAN RDBMS

Langkah 1 : Pemasangan (Install) Perisian RDBMS

Bagi membangunkan pangkalan data fizikal, perisian RDBMS yang dipilih perlu dipasang
terlebih dahulu. Sekiranya MySQL yang dipilih, perisian tersebut boleh dimuat turun daripada
laman web MySQL dan rujuk dokumentasi pemasangan langkah demi langkah daripada laman
web yang sama.



Langkah 2 : Peruntukan Ruang Storan

a)

b)

Struktur storan pangkalan data terdiri daripada struktur storan fizikal dan struktur
storan logikal. Struktur fizikal terdiri fail-fail seperti datafiles, redo log files dan
control files. Manakala struktur logikal pula terdiri daripada beberapa tablespace
iaitu ruang sebenar bagi menyimpan beberapa datafile.

Segment

Extent1

Extent 2

Blocks

Rajah 5.2 : Struktur Storan Secara Logikal Dalam Pangkalan Data

Berdasarkan rajah di atas, tablespace adalah storan logikal yang mengandungi
beberapa segment. Segment adalah objek pangkalan data yang terdiri daripada
jadual-jadual dan index. Satu segment mengandungi beberapa set extent yang
diperuntukkan bagi objek pangkalan data secara spesifik seperti jadual. Setiap
extent terdiri daripada beberapa data block yang diperuntukkan untuk menyimpan
data yang spesifik. Satu data block adalah ruang cakera yang spesifik kepada
jumlah bait (byte). Sebagai contoh, satu data block adalah ruang cakera fizikal
berjumlah 2KB. Peruntukan bagi 24KB dalam satu extent, sebanyak 12 data block
diperlukan. Data block adalah unit terkecil dalam storan pangkalan data yang
diperuntukkan untuk menyimpan datafile secara fizikal.

Ruang storan adalah lokasi simpanan bagi data sebenar yang terdapat dalam
objek pangkalan data. Ruang storan hanya memperuntukkan lokasi simpanan bagi
pangkalan data. Dengan menggunakan ruang storan, DBA boleh mengawal
bagaimana reka bentuk penyimpanan dilakukan semasa proses pembangunan
pangkalan data. Fungsi penggunaan ruang storan adalah untuk mengoptimumkan
prestasi pangkalan data iaitu seperti pengasingan lokasi atau jenis cakera bagi
penyimpanan jenis capaian ke atas data. laitu seperti data yang kerap diindeks
atau dicapai perlu disimpan dalam cakera yang lebih stabil seperti solid-state drive
(SSD) manakala data yang mengandungi data atau fail arkib disimpan dalam
cakera yang biasa seperti standard hard-disk drive (HDD).



Langkah 3 : Ciptakan Pangkalan Data (Create A Database)

a)

Pangkalan data diperlukan untuk penyimpanan dan pengurusan data. la
membolehkan perancangan struktur data dapat dilaksanakan secara optimum bagi
memenuhi keperluan aplikasi.

Hanya pengguna yang mempunyai capaian root atau superuser sahaja dibenarkan
untuk mencipta pangkalan data.

Namakan pangkalan data yang dibina menggunakan nama yang deskriptif yang
menggambarkan domain atau bisnes aplikasi yang ingin dibangunkan. Elakkan
menggunakan nama yang sama dengan kata kunci (reserve word) pangkalan data
untuk mengelakkan konflik.

Langkah 4 : Wujudkan Jadual (Create Table)

a)

b)

Jadual diwujudkan setelah pangkalan data siap dibangunkan. Jadual adalah terdiri
daripada baris dan lajur yang mengandungi rekod maklumat dalam pangkalan
data. Dalam reka bentuk pangkalan data logikal (sila rujuk Reka Bentuk
Pangkalan Data Logikal [F3.3]) Entiti adalah merujuk kepada jadual (table) bagi
pangkalan data fizikal. Manakala atribut pula adalah medan (field). Jadual berikut
adalah pemadanan secara teknologi antara reka bentuk pangkalan data logikal
dan fizikal.

Jadual 5.1 : Pemadanan Istilah antara reka bentuk logikal dan fizikal
pangkalan data

Istilah dalam reka bentuk Istilah dalam reka bentuk fizikal
logikal

Entiti Jadual (table)

Atribut Medan (column atau field)

Primary UID Primary Key

Secondary UID Unique Key

Relationship Foreign Key

Perkara yang perlu diberi perhatian semasa mencipta jadual:-

i) Untuk mengelakkan data tidak diisi, ciri-ciri NOT NULL diberikan kepada
medan tersebut

i) Ciri medan AUTO_INCREMENT adalah bagi menambahkan satu nilai
seterusnya dalam medan dengan mengambil kira bahawa jenis medan
adalah INT



iii}) Medan yang ditakrif sebagai PRIMARY KEY adalah menunjukkan bahawa
medan tersebut adalah kunci utama dalam jadual. PRIMARY KEY boleh
ditakrifkan kepada satu atau lebih medan.

iv) Penggunaan PRIMARY KEY dan FOREIGN KEY untuk melaksanakan
normalisasi (hingga tahap ke3 atau ke-4) untuk mengurangkan pengulangan
data dan meningkatkan integriti data.

Langkah 5 : Wujudkan VIEW (Create VIEW)

a)

VIEW adalah merujuk kepada jadual maya yang dihasilkan melalui arahan SQL.
Jadual adalah terdiri daripada baris dan lajur yang mengandungi rekod maklumat
berdasarkan arahan SQL yang telah dilaksanakan.

Dalam satu pangkalan data, view dan jadual berkongsi ruang jadual. Namun
begitu, view dan jadual tidak boleh mempunyai nama yang sama.

Beberapa fungsi SQL boleh dimasukkan ke dalam arahan seperti WHERE dan
arahan JOIN daripada beberapa jadual lain kepada jadual maya yang mana fungsi
arahan tersebut dipaparkan sebagai satu jadual.

Penggunaan view juga boleh meningkatkan keselamatan data dengan
menghadkan capaian mengikut view yang telah diwujudkan.

Langkah 6 : Wujudkan INDEX (Create INDEX)

a)

Kebiasaannya data disimpan tidak mengikut urutan. Data baru yang dimasukkan
tidak disimpan mengikut susunan berdasarkan data yang dimasukkan terdahulu.
Oleh yang demikian, tempoh untuk menemui data berdasarkan arahan adalah
kurang pantas berbanding kemasukan data. Dengan itu, index perlu dilakukan bagi
membolehkan data ditemui dengan lebih cepat.

Arahan INDEX digunakan untuk medan-medan tertentu dalam sesuatu jadual bagi
mempercepatkan carian data. Lokasi sesuatu data lebih pantas ditemui
berbanding carian satu-persatu baris yang terdapat dalam jadual jika tidak
menggunakan INDEX. Sebaiknya, gunakan INDEX pada lajur (column) yang
sering dicari, dihubungkan (JOIN), atau ditapis (WHERE).

Langkah 7 : Memuat Masuk (Load) Data Ke Dalam Pangkalan Data

Sekiranya terdapat data daripada pangkalan data lama, data tersebut boleh dimuat masuk ke
dalam pangkalan data yang baru dibina. Terdapat dua cara untuk memuat masuk data yang
sedia ada ke dalam pangkalan data iaitu:

a)

Menggunakan Penyataan INSERT untuk memasukkan rekod tunggal ke dalam
jadual.



b)  Menggunakan Penyataan LOAD DATA membolehkan semua data yang terdapat
dalam fail teks dimasukkan ke dalam pangkalan data menggunakan satu arahan
sahaja.

Langkah 8 : Wujudkan Pengguna Dan Kawalan Capaian

a) Pengguna diwujudkan untuk mengakses sesuatu pangkalan data. Dengan itu,
pengguna perlu mempunyai capaian root atau superuser untuk melaksanakan
aktiviti-aktiviti pembangunan pangkalan data dan juga mencipta pengguna.

b) Pentadbir pangkalan data (Database Administrator — DBA) boleh memberi
kebenaran capaian kepada pengguna melalui arahan GRANT.

c) Berikut adalah senarai arahan kebenaran (GRANT) yang digunakan mengikut
kesesuaian capaian.

i) ALL PRIVILEGES — membenarkan semua aktiviti

ii) CREATE — membenarkan pengguna mencipta pangkalan data dan jadual
i) DROP — membenarkan pengguna menghapus pangkalan data dan jadual
iv) DELETE — membenarkan pengguna menghapuskan baris rekod dalam

jadual

v) INSERT — membenarkan pengguna menambah baris rekod dalam jadual
vi) SELECT — membenarkan pengguna membaca rekod dalam pangkalan data
vii)  UPDATE — membenarkan pengguna mengemaskini rekod dalam jadual

d) Pentadbir pangkalan data (Database Administrator — DBA) boleh menarik balik
kebenaran pengguna melalui arahan REVOKE.

Langkah 9 : Dokumenkan Pangkalan Data

Dokumenkan maklumat pangkalan data fizikal yang dibangunkan ke dalam D09 Dokumen
Pangkalan Data. Dokumentasi mengikut susunan berikut:

a) Ringkasan maklumat pangkalan data fizikal.

b)  Skrip yang mengandungi arahan-arahan SQL.

5.5.4 LANGKAH-LANGKAH PEMBANGUNAN PANGKALAN DATA NOSQL

Langkah 1 : Tentukan Pangkalan Data NoSQL Yang Bersesuaian

Sebelum proses pemasangan perisian dimulakan, penentuan jenis NoSQL yang bersesuaian
kepada keperluan projek perlu dikenal pasti sama ada model data jenis key-value pairs,
column, document-based ataupun model data jenis graph. Oleh itu, hanya gunakan pangkalan
data berasaskan NoSQL mengikut keperluan fungsian aplikasi yang ingin dibangunkan. Buku



panduan ini hanya menyentuh berkaitan pembangunan pangkalan data NoSQL yang
berasaskan dokumen menggunakan perisian MongoDB.

Langkah 2 : Pemasangan (install) Perisian NoSQL

Pangkalan data fizikal dibangunkan dengan memasang perisian NoSQL yang dipilih.
Sekiranya MongoDB yang dipilih, perisian tersebut boleh dimuat turun daripada laman web
MongoDB dan rujuk dokumentasi pemasangan langkah demi langkah daripada laman web
yang sama.

Langkah 3 : Cipta Pangkalan Data

MongoDB membenarkan pangkalan data dicipta menggunakan beberapa kaedah seperti
menggunakan arahan command-line atau perisian bantuan seperti MongoDB Compass.

Arahan mongosh digunakan untuk memulakan sesi interaktif MongoDB Shell yang
didatangkan bersekali dengan pemasangan perisian MongoDB.

Arahan use sistem_tempahan pula digunakan untuk mencipta (jika belum wujud) atau
menukar kepada pangkalan data bernama sistem_tempahan.

Langkah 3 : Tentukan Reka Bentuk Struktur Data

Pangkalan data NoSQL seperti MongoDB tidak menggunakan hubungan tradisional seperti
RDBMS. Oleh itu, data boleh disimpan dalam bentuk koleksi (collection) yang mengandungi
dokumen (documents) dalam format JSON/BSON.

Dua jenis reka bentuk struktur data yang boleh dipilih, iaitu secara:
a) Pemodelan dokumen secara penyematan (embeded) yang sesuai untuk data yang
sering dicapai bersama; atau
b) Pemodelan dokumen secara rujukan (referencing) untuk data bersaiz besar dan
capaian dikongsi oleh banyak dokumen.

Arahan db.createCollection(“bilik_mesyuarat”) digunakan untuk mencipta dokumen / koleksi

bagi pangkalan data.

Manakala, arahan db.bilik_mesyuarat.insertOne({nama: “Bilik Mesyuarat Utama”, catatan:
“Kapasiti maksima ialah 1000 orang’}) digunakan untuk mencipta serta memasukkan data ke
dalam dokumen / koleksi tersebut.



Langkah 4 : Menentukan Strategi Pengindeksan

Pengindeksan adalah langkah penting dalam reka bentuk skema NoSQL kerana ia membantu

mempercepatkan prestasi pertanyaan (query) dengan mengurangkan masa carian dalam

pangkalan data. Pemilihan indeks yang sesuai bergantung kepada corak pertanyaan yang

digunakan dalam aplikasi. Berikut adalah faktor utama dan bagaimana ia mempengaruhi

pemilihan struktur data dalam NoSQL:

a)

b)

Indeks Medan Tunggal (Single Field Index)

Indeks ini dibuat pada satu medan dalam dokumen. Misalnya, untuk mengindeks
medan user_id  secara menaik  dengan menggunakan arahan
db.users.createlndex({“user_id”:1}).-Indeks ini berguna untuk pertanyaan (query)
berdasarkan satu medan tertentu.

Indeks Majmuk (Compound Index)

Indeks ini melibatkan lebih dari satu medan. Sebagai contoh, untuk mempercepat
pencarian berdasarkan medan city dan zip, arahan
db.addresses.createlndex({"city”: 1, “zip”: 1}) boleh dilaksanakan. Urutan medan
dalam indeks majmuk penting dan harus disesuaikan dengan corak pertanyaan
(query) yang sering digunakan.

Indeks Teks (Text Index):

Digunakan untuk pencarian teks penuh pada medan jenis string. Contohnya, untuk
mengindeks medan name bagi pencarian teks, arahan
db.products.createlndex({*"name”:"text’}) boleh digunakan untuk memungkinkan
pencarian kata kunci dalam medan jenis string dengan efisien.

Langkah 5 : Optimumkan Pertanyaan (Query)

Dalam pemodelan data NoSQL, adalah penting untuk memastikan bahawa pertanyaan (query)

dijalankan dengan cekap bagi mengelakkan kelewatan dalam pemprosesan data. Berikut

adalah beberapa prinsip utama untuk mencapai kecekapan tersebut:

a)

Memastikan Pertanyaan (Query) Efisyen dengan Mengelakkan Saiz Dokumen
yang Besar

Dokumen yang terlalu besar boleh menyebabkan penggunaan sumber yang tinggi,
meningkatkan masa pemprosesan, dan memperlahankan pertanyaan (query)
kerana keseluruhan dokumen perlu dimuatkan ke dalam memori. Oleh itu :

i) Simpan hanya data yang diperlukan dalam setiap dokumen.



ii) Gunakan teknik normalisasi separa, iaitu menyimpan data yang kerap
diakses dalam dokumen utama dan menempatkan data yang kurang
digunakan dalam koleksi lain (boleh diakses melalui rujukan).

iii) Pemecahan data kepada bahagian kecil untuk mengelakkan pertumbuhan
dokumen yang tidak terkawal.

Gunakan Projection untuk Mengembalikan (Returning) Medan yang Diperlukan
Sahaja

Jika anda hanya memerlukan beberapa medan dalam pertanyaan (query),
mengambil keseluruhan dokumen adalah langkh yang tidak efektif dan boleh
menyebabkan penggunaan memori serta data rangkaian yang tinggi. Oleh itu,
Projection digunakan dalam pangkalan data dokumen suntuk hanya mengambil
medan yang diperlukan sahaja semasa melakukan pertanyaan (query).

Elakkan Struktur Data yang Mempunyai Banyak Lapisan (Deeply Nested
Structures)

Mengelakkan struktur berlapis (deeply nested structures) dalam pangkalan data
NoSQL adalah penting untuk memudahkan pengemaskinian data dan
mengoptimumkan prestasi pertanyaan (query). Struktur data yang terlalu
bersarang (contoh: objek dalam objek atau array dalam array) menyukarkan
pengemaskinian kerana:

i) Penulisan Semula Dokumen

Dalam pangkalan data NoSQL seperti MongoDB, dokumen disimpan dalam
format seperti JSON atau BSON. Jika struktur data yang terlalu berlapis,
mengemaskini satu elemen di dalamnya berkemungkinan memerlukan
penulisan semula keseluruhan dokumen. Ini kerana NoSQL seringkali tidak
menyokong pengemaskinian separa (partial update) pada elemen yang
terlalu dalam.

ii) Beban Pemprosesan

Pengemaskinian pada struktur yang berlapis memerlukan lebih banyak
sumber pemprosesan dan memori kerana sistem perlu mengimbas dan
memproses keseluruhan dokumen. Ini boleh mengurangkan prestasi sistem,
terutamanya jika dokumen tersebut besar atau kerap dikemaskini.

iii) Kesukaran Pertanyaan (Query)
Pertanyaan (query) pada struktur data yang berlapis cenderung menjadi

lebih kompleks dan perlahan. Sebagai contoh, proses mencari atau
mengemas kini data dalam array bersarang memerlukan penggunaan



Cara

iii)

Langkah 6
Partitioning)

operator khusus (seperti SelemMatch dalam MongoDB), yang mungkin
kurang efisien berbanding pertanyaan pada struktur data yang lebih rata.

Mengelakkan Deeply Nested Structures:
Gunakan Struktur Rata (Flat)

Seboleh-bolehnya, reka struktur data yang lebih rata dengan mengurangkan
tahap lapisan. Sebagai contoh, daripada menyimpan semua maklumat
dalam satu dokumen, anda boleh memecahkan data menjadi beberapa
koleksi atau dokumen yang berasingan dan merujuk antara satu sama lain
menggunakan identifier (seperti id).

Denormalisasi Terkawal

Dalam NoSQL, denormalisasi (menyimpan data yang berulang) kadangkala
diperlukan untuk meningkatkan prestasi pertanyaan (query). Namun,
pastikan denormalisasi dilakukan secara terkawal dan tidak mencipta
struktur yang terlalu kompleks.

Pecahkan Data Besar

Jika dokumen terlalu besar atau kompleks, pertimbangkan untuk
memecahkannya menjadi dokumen yang lebih kecil. Sebagai contoh,
daripada menyimpan semua pesanan pelanggan dalam satu dokumen,
simpan setiap pesanan sebagai dokumen berasingan dan hubungkan
dengan customer _id.

Rancang Skalabiliti dan Pengurusan Data Besar (Sharding dan

Apabila data bertambah besar dalam pangkalan data NoSQL, anda perlu memastikan
prestasi pangkalan data adalah kekal stabil dan data dapat diakses dengan pantas.
Perkara ini boleh dicapai melalui kaedah sharding dan partitioning.

a)

Sharding

Sharding adalah teknik membahagikan data ke dalam beberapa bahagian yang
lebih kecil (disebut "shard") dan menyebarkannya ke beberapa pelayan atau node
dalam sistem. Setiap shard mengandungi subset data yang unik, dan setiap shard
disimpan pada node yang berbeza. Ini membolehkan sistem mengagihkan beban
dan meningkatkan prestasi.



b)

Kelebihan Sharding:

i)
i)
ii)

Skalabiliti Mendatar (horizontal scaling): Sharding membolehkan sistem
berkembang secara mendatar dengan menambah lebih banyak node.
Peningkatan Prestasi: Dengan membahagikan data, beban kerja diagihkan
ke beberapa node, mengurangkan beban pada setiap node individu.
Ketersediaan Tinggi: Jika satu node gagal, hanya shard pada node tersebut
yang terjejas, bukan keseluruhan sistem.

Cabaran Sharding:

i)
i)

Kompleksiti Pengurusan: Menguruskan shard dan memastikan data
diagihkan dengan betul boleh menjadi kompleks.

Ketidakseimbangan Beban: Jika data tidak diagihkan secara betul,
beberapa shard mungkin menjadi "hotspot" yang menyebabkan prestasi
menurun.

Partitioning

Partitioning adalah teknik membahagikan data ke dalam partition (bahagian)
berdasarkan kriteria tertentu, seperti nilai kunci atau julat nilai. Partitioning boleh
dilakukan secara menegak (vertical partitioning) atau mendatar (horizontal
partitioning).

Jenis Partitioning:

Horizontal Partitioning (Sharding): Membahagikan data berdasarkan baris.
Setiap partition mengandungi subset baris dari jadual atau koleksi.

Vertical Partitioning: Membahagikan data berdasarkan lajur. Setiap partition
mengandungi subset lajur dari jadual atau koleksi.

Kelebihan Partitioning:

i)

ii)

Pengoptimuman Prestasi: Dengan membahagikan data, query boleh
dijalankan pada subset data yang lebih kecil, meningkatkan prestasi.

Pengurusan Data yang Lebih Baik: Partitioning membolehkan
pengurusan data yang lebih teratur dan efisien.

Cabaran Partitioning:

i)

i)

Kompleksiti Reka Bentuk: Memilih kriteria partitioning yang betul adalah
penting untuk memastikan data diagihkan dengan baik.
Ketidakseimbangan Data: Jika kriteria partitioning tidak dipilih dengan
baik, beberapa partition mungkin menjadi terlalu besar atau terlalu kecil.



Langkah 7 : Dokumenkan Pangkalan Data

Dokumenkan maklumat pangkalan data fizikal yang dibangunkan ke dalam D08 Dokumen
Pangkalan Data yang mengandungi maklumat berikut:

a)

b)

Maklumat pangkalan data fizikal.

i)  Profil pangkalan data

)  Peruntukan ruang storan

)  Bilangan table, view

)  Stored procedure

)  Maklumat jadual dan medan yang mengandungi INDEKS

) Senarai pengguna yang mempunyai kawalan akses ke atas pangkalan data
/ jadual.

Skrip yang mengandungi arahan-arahan SQL khusus mengikut perisian NoSQL

yang digunakan.

5.5.5 AMALAN TERBAIK PEMBANGUNAN PANGKALAN DATA

a)

b)

d)

Gunakan Teknik Pemantauan dan Logging
Pantau penggunaan CPU, memori, prestasi carian, dan /atency menggunakan
perisian sokongan seperti Prometheus, Grafana, atau New Relic.

Kawal Akses Keselamatan

i) Gunakan Role-Based Access Control (RBAC) untuk mengehadkan capai
pengguna kepada pangkalan data.

i)  Amalkan pengasingan / pemisahan tugas kepada pengguna yang diberikan
akses kepada pangkalan data. Pastikan pengguna hanya diberikan akses
yang minimum yang diperlukan untuk melaksanakan tugas.

iy Pastikan penyulitan data dilaksanakan pada data sensitif yang terdapat
dalam pangkalan data.

Menapis Input Pengguna
Gunakan prepared statements / parameterized queries,
menggunakan input pengguna secara langsung ke dalam query.

serta elakkan

Kemaskini Versi dan Patching
Sentiasa pastikan DBMS adalah versi yang terkini serta sentiasa melaksankan
patch keselamatan terkini.

Gunakan Connection Pooling
Hadkan bilangan sambungan serentak untuk mengelakkan beban pada pangkalan
data.



f)

g)

h)

Lakukan Ujian Prestasi
Laksanakan ujian bebanan menggunakan perisian seperti JMeter atau Gatling
sebelum pelancaran.

Jalankan Salinan Sandar dan Ujian Pemulihan

Jika menggunakan MongoDB, boleh menggunakan fungsi mongodump untuk
melaksanakan salinan sandar serta fungsi mongostore untuk memulihkan kembali
backup.

Pastikan Dokumentasi yang Jelas
Dokumentasikan skema, indeks, dan pertanyaan penting untuk memudahkan
penyelenggaraan.



5.6. PENGATURCARAAN APLIKASI

5.6.1 KETERANGAN

Pengaturcaraan aplikasi merujuk kepada proses menulis, menguji, dan menyelenggara kod
pengaturcaraan dalam pembangunan sistem bagi memenuhi keperluan dan reka bentuk
sistem yang telah disediakan pada fasa-fasa sebelumnya. Proses ini melibatkan penggunaan
bahasa dan rangka kerja pengaturcaraan tertentu bagi menghasilkan fungsi, antaramuka dan
logik supaya sistem yang dibangunkan dapat beroperasi dengan cekap, selamat, dan mudah
untuk dikendalikan. Amalan-amalan terbaik dalam pengaturcaraan menjamin kod-kod
pengaturcaraan yang dihasilkan adalah berkualiti tinggi, mudah untuk diselenggara, dan
meminimakan berlakunya sebarang ralat.

5.6.2 OBJEKTIF

a) Memberi penerangan kepada tahap asas-asas pengaturcaraan sistem.
b)  Menyenaraikan amalan-amalan terbaik di dalam pengaturcaraan sistem.

¢) Melihat kepada amalan pengaturcaraan yang selamat.

5.6.3 TAHAP-TAHAP PENGATURCARAAN

Dalam pembangunan sistem, bahasa pengaturcaraan boleh diklasifikasikan kepada lima (5)
tahap utama berdasarkan kepada kaedah pemprosesan kod yang ditulis supaya dapat
dilaksanakan oleh komputer. Setiap tahap ini menggambarkan perbezaan peringkat abstraksi
antara kod yang ditulis dengan arahan yang boleh difahami dan dilaksanakan oleh satu-satu
perkakasan komputer melalui pemprosesan tertentu.

a) Machine Language

Machine language adalah bahasa pengaturcaraan yang paling asas berbentuk kod
binari (0 dan 1) yang dapat terus dilaksanakan oleh satu-satu komputer tanpa
sebarang lapisan penterjemahan tambahan. Kod pada peringkat ini biasanya
sangat sukar untuk ditulis dan dibaca secara manual kerana ia mewakili arahan
rendah dan asas yang hanya boleh difahami oleh komputer.

b) Assembly Language

Assembly language merupakan bahasa pengaturcaraan pada tahap rendah yang
menggunakan notasi simbolik atau mnemonik menggantikan kod binari.
Pengaturcaraan pada tahap ini memudahkan penulisan kod arahan menggunakan
simbol yang setara dengan arahan mesin, serta memberikan kawalan yang lebih
tinggi dalam aktiviti pengaturcaraan. Walaupun tahap bahasa ini adalah lebih



d)

e)

mudah berbanding machine language, penggunaan assembly language masih
memerlukan asas pengetahuan yang mendalam berkenaan dengan struktur-
struktur pengkomputeran. Contoh assembly language yang lazim digunakan
adalah seperti x86 Assembly, ARM Assembly, dan MIPS Assembly.

High Level Language

Bahasa pengaturcaraan pada peringkat ini menawarkan tahap abstraksi yang lebih
tinggi berbanding assembly language dengan mempermudahkan pengurusan
aspek teknikal seperti memori dan arahan mesin. Penulisan kod pada tahap ini
menggunakan sintaks yang lebih praktikal untuk difahami dan menghampiri
bahasa manusia (natural language). Oleh yang demikian, proses pembangunan
dapat dilaksanakan dengan lebih cepat dan memudahkan penyelenggaraan
sistem aplikasi yang dibangunkan. Kod yang ditulis dalam high level language
pada kebiasaannya memerlukan proses kompilasi atau interpretasi sebelum ia
boleh diproses oleh satu-satu komputer. Contoh high level language adalah seperti
Java, C++, dan Python.

Scripting Language

Scripting language merupakan tahap pengaturcaraan yang dijalankan secara terus
melalui proses interpretasi tanpa memerlukan kompilasi terlebih dahulu. Bahasa
ini sesuai digunakan untuk tugasan-tugasan seperti automasi, prototaip pantas,
serta sebagai penghubung antara komponen aplikasi yang berbeza dalam satu-
satu sistem. Scripting language menggunakan sintaks arahan yang ringkas dan
dinamik supaya kod dapat dilaksanakan dengan cepat dan mudah disesuaikan
mengikut keperluan. Contoh scripting language yang lazim digunakan adalah PHP,
JavaScript, dan Ruby.

Domain-Specific Language

Domain-Specific Language adalah bahasa pengaturcaraan yang direka khusus
untuk kegunaan di dalam domain atau bidang tertentu. Bahasa pada tahap ini
mempunyai sintaks dan ciri-ciri yang telah dioptimum untuk menyelesaikan
masalah atau tugasan khusus dalam konteks domain berkenaan. Domain-Specific
Language dapat memudahkan pengaturcara menghasilkan kod yang lebih ringkas
dan tepat kerana ia direka khas untuk menangani masalah yang terkandung dalam
satu-satu domain tertentu, berbanding dengan bahasa pengaturcaraan umum
yang lebih bersifat generik. Contoh bahasa Domain-Specific Language adalah
SQL untuk pengurusan pangkalan data, HTML dan CSS untuk pembangunan web,
dan RegEx untuk pengurusan corak teks dan carian.



5.6.4 JENIS-JENIS PENGATURCARAAN

Di dalam pembangunan sistem, pelbagai jenis pengaturcaraan kerap dipraktikkan bergantung
kepada pendekatan dan kaedah yang dipilih untuk menyelesaikan satu-satu masalah tertentu.
Jenis-jenis pengaturcaraan ini mencerminkan gaya dan paradigma yang berbeza dalam
menulis kod, mengurus data, dan mengawal aliran kawalan, iaitu susunan langkah-langkah
yang dijalankan berdasarkan kepada keputusan (decisions) dan peraturan (conditions) di
dalam kod. Memahami jenis pengaturcaraan yang berbeza ini dapat membantu pengaturcara
memilih pendekatan yang paling ideal untuk satu-satu projek, di mana keputusan yang dibuat
secara langsung mampu meningkatkan keberkesanan serta kualiti hasil sistem yang
dibangunkan.

a)

b)

Pengaturcaraan Tidak Berstruktur (Unstructred Programming)

Kod ditulis tanpa berstruktur, semua arahan ditulis dalam fungsi main().

Pengaturcaraan Berstruktur (Structured Programming)

Pengaturcaraan berstruktur merupakan pengaturcaraan bertatacara. Kod yang
besar dipecahkan kepada kaedah-kaedah pendek (juga dikenali sebagai fungsi
atau tatacara) yang lebih kecil agar mudah difahami.

Pengaturcaraan berstruktur biasanya dikaitkan dengan reka bentuk yang
menggunakan pendekatan atas-bawah. Dengan pendekatan ini, pengaturcara
memetakan struktur yang besar dalam aturcara kepada bentuk operasi kecil,
seterusnya melaksanakannya dan menguji operasi-operasi kecil tersebut, dan
akhirnya menggabungkan kepada keseluruhan aturcara.

Pengaturcaraan Berorientasikan Objek (Object-Oriented Programming)

Pengaturcaraan berorientasikan objek merupakan aturcara komputer yang terdiri
daripada sekumpulan unit-unit atau objek. Setiap objek berupaya untuk menerima
dan menghantar mesej (pesanan) kepada objek lain. Dengan cara ini, mesej dapat
ditangani oleh sebahagian daripada kod. Konsep Asas pengaturcaraan
berorientasikan objek adalah seperti berikut:

i) Kelas (Class) mentakrifkan ciri-ciri abstrak bagi sesuatu benda. Ini
termasuklah sifat-sifat yang ada padanya dan peranannya.

i)  Objek (Object) merupakan instance bagi suatu kelas.

iii) Kaedah (Method) merujuk kepada fungsi atau prosedur yang dimiliki oleh
sebuah objek.

iv)  Pewarisan (Inheritance) merupakan konsep di mana sebuah kelas boleh
memiliki “subkelas” yang mengkhususkan ciri dan tingkah laku kelas
induknya. Semua subkelas tersebut akan mewarisi segala sifat dan kaedah
yang terdapat pada kelas induk tersebut.



v)  Pengkapsulan (Encapsulation) mengasingkan pelaksanaan (implementasi)
dalaman objek daripada antaramuka bertujuan untuk melindungi data dan
mengawal akses.

vi)  Pengabstrakan (Abstraction) mempermudahkan struktur data dan operasi
kepada jenis data yang ringkas serta hanya mengandungi sifat-sifat penting
untuk tujuan tertentu.

vii)  Polimorfisme (Polymorphism) membolehkan fungsi atau kaedah yang sama

digunakan untuk operasi berbeza berdasarkan jenis objek atau data.

5.6.5 ASAS-ASAS PENGATURCARAAN

Asas-asas pengaturcaraan merujuk kepada elemen-elemen penting yang membentuk kepada
asas penulisan kod dalam pembangunan sistem. Pemahaman terhadap konsep-konsep ini
amat penting bagi membolehkan pengaturcara membina logik yang tepat dan tersusun serta
memastikan sistem yang dibangunkan berfungsi dengan cekap dan mudah diselenggara.

a)

b)

c)

Nilai Tetap (Constant)

Nilai tetap ialah ruang memori yang diisytiharkan (declare) dan digunakan untuk
menyimpan data yang tidak boleh diubah dalam fail pengaturcaraan. Contoh:

<2php
define("MAKSIMUM_BILANGAN_HARI_TEMPATAN", 3); /* Nilai tetap bagi had
Maksimum Bilangan Hari Tempahan*/

2>

Pemboleh Ubah (Variable)

Pemboleh ubah ialah ruang memori yang diisytihar (declare) dan digunakan untuk
menyimpan serta mengendalikan data dalam fail pengaturcaraan, di mana nilai
yang disimpan boleh diubah semasa aplikasi sedang beroperasi. Contoh:

<2php
$namaPengguna = "Ahmad"; // Pemboleh ubah bagi Nama Pengguna
$bilanganOrang = 10; // Pemboleh ubah bagi Bilangan Orang
$tarikhTempahan = "2025-07-18"; // Pemboleh ubah bagi Tarikh Tempahan
$masaTempahan ="14:00"; // Pemboleh ubah bagi Masa Tempahan
2>
Parameter

Parameter merupakan placeholder atau slot khas di dalam sesuatu fungsi atau
kelas yang digunakan untuk menerima data input. Berbeza dengan pemboleh
ubah biasa yang menyimpan data dalam keseluruhan program, parameter hanya



wujud dalam konteks fungsi dan berperanan sebagai pengantara untuk
memindahkan data ke dalam fungsi tersebut. Contoh:

<gphp
function tempahBilik($namaPengguna)

{
// Proses tempahan bilik bagi pengguna tertentu
echo "Tempahan bilik diterima untuk " . $namaPengguna;

}
tempahBilik("Ahmad");
// Memanggil fungsi dengan nama pengguna ("Ahmad”) sebagai parameter
2>

d) Jenis Data (Data Type)

Jenis data adalah merujuk kepada kategori nilai yang boleh disimpan dalam satu-
satu pemboleh ubah seperti integer, float, string atau boolean. Memahami jenis
data penting untuk memastikan operasi dan pengiraan dalam pengaturcaraan
dilaksanakan dengan tepat. Contoh:

<2php
$bilanganOrang = 10; // Jenis data adalah Integer
$hargaSejam = 25.50; // Jenis data adalah Float
$tarikhnTempahan = "2025-07-18"; // Jenis data adalah String
2>

e) Komen

Komen ialah teks penerangan dalam kod pengaturcaraan yang tidak akan
dilaksanakan oleh komputer. la digunakan untuk menerangkan fungsi kod,
memberi nota, atau memudahkan pemahaman seseorang pengaturcara kepada
kod yang telah dibina sebelum ini.



f)

g)

PHP
// Ini adalah format komen satu baris dalam PHP
/* Ini adalah format komen berbilang baris dalam PHP */

Java
// Ini adalah format komen satu baris dalam Java
/* Ini adalah format komen berbilang baris dalam Java */

JavaScript
// Ini adalah format komen satu baris dalam JavaScript
/* Ini adalah format komen berbilang baris dalam JavaScript */

Python
# Ini adalah format komen dalam Python

HTML
<l-- Ini adalah format komen dalam HTML -->

CSS
/* Ini adalah format komen dalam CSS */

Arimetik

Aritmetik merujuk kepada operasi matematik yang digunakan dalam
pengaturcaraan untuk mengira nilai, seperti tambah (‘+), tolak (*-’), darab ("), dan
bahagi (‘/’). Contoh:

<gphp
$masaMula = strtotime('09:30"); // Masa mula tempahan
$masaTamat = strtotime("12:15"); // Masa tamat tempahan

$jumlahMasa = ($masaTamat - $masaMula) / 3600; // Penggunaan arimetik
2>

Operator Logikal

Operator logikal digunakan untuk menggabung atau membandingkan nilai boolean
dalam pengaturcaraan. la membantu semasa membuat sesuatu keputusan
berdasarkan kepada peraturan yang telah ditetapkan. Operator logik yang lazim
digunakan adalah seperti AND (&&), OR (||), dan NOT (!). Contoh:



<2php

$bilanganOrang = 8;
$kapasitiBilik = 10;
$tempohTempahanValid = true;

// Penggunaan operator logikal
if ($bilanganOrang <= $kapasitiBilik && $tempohTempahanValid)
{

echo "Tempahan diterima.”;

}

else

{

echo '"Tempahan tidak sah.";

}

2>

Pernyataan Bersyarat (Conditionals)

Pernyataan bersyarat membolehkan pengaturcara melaksanakan kod tertentu
berdasarkan sama ada sesuatu syarat dipenuhi atau tidak. Struktur bersyarat yang
biasa digunakan termasuk if, elseif, dan else yang membolehkan aliran program
berubah mengikut nilai logik yang ditetapkan. Contoh:

<¢php
$bilanganOrang = 12;
$kapasitiBilik = 10;

// Penggunaan pernyataaan bersyarat if, elseif, dan else
if ($bilanganOrang > $kapasitiBilik) {

echo '"Tempahan melebihi kapasiti bilik.";
} elseif ($bilanganOrang == $kapasitiBilik) {

echo '"Tempahan mencapai kapasiti maksimum bilik.";
}else {

echo '"Tempahan diterima.”;

}

2>



)

k)

Pernyataan Pilihan

Pernyataan pilihan membolehkan pengaturcara memilih salah satu antara
beberapa blok kod untuk dilaksanakan mengikut kepada nilai sesuatu pemboleh
ubah. Pernyataan pilihan biasanya digunakan sebagai alternatif kepada
pernyataan bersyarat if-else apabila sesuatu proses perlu membuat keputusan
berdasarkan kepada nilai atau pilihan yang banyak. Dalam kaedah pernyataan
pilihan switch, setiap kebarangkalian nilai yang dibandingkan adalah dikenali
sebagai case. Contoh:

<¢php
$kodStatus = 2;

// Penggunaan pernyataan pilihan switch/case
switch ($kodStatus) {
case 1:
echo "Tempahan diterima.”;
break;
case 2:
echo "Tempahan dalam proses."”;
break;
case 3:
echo "Tempahan ditolak.";
break;
default:
echo "Kod status tidak dikenali.”;
break;

Iterasi

Iterasi merujuk kepada proses untuk mengulangi satu set arahan atau blok kod
sehinggalah syarat-sayarat tertentu dipenuhi. Jenis iterasi yang biasa digunakan
adalah seperti for, while, dan do-while. Kaedah ini membolehkan pengaturcara
melaksanakan tugasan yang sama tanpa perlu menulis kod berulang kali. Contoh-
contoh:



// Kaedah for loop

<%php

$senaraiPengguna = ["Ahmad", "Siti", "Ali", "Zara'"];
for ($i = 0; $i < count($senaraiPengguna); $i++)

{

echo $senaraiPenggunal[$i] . "<br>";

}

2>

// Kaedah while loop

<%php

$bilangan = 0;

while ($bilangan < 4)

{
echo "Tempahan ke-". ($bilangan + 1) . "<br>";
$bilangan++;

}

2>

// Kaedah do-while

<2php
$bilangan = 0;
do
{
echo "Tempahan ke-". ($bilangan + 1) . "<br>";

$bilangan++;
} while ($bilangan < 4);
2>

Fungsi

Fungsi merupakan blok kod yang dibangun untuk melaksanakan satu-satu operasi
atau tugasan tertentu bertujuan untuk diguna pakai semula dalam kod
pengaturcaraan yang lain. Penggunaan kaedah fungsi ini menjadikan kod
pengaturcaraan lebih teratur, mudah dibaca dan meningkatkan kebolehulangan
(reusability). Satu-satu fungsi yang disediakan akan menerima input melalui
parameter dan menghasilkan output daripada pengiraan atau pemprosesan data
yang dilakukan di dalamnya. Contoh:



<¢php

//Penggunaan fungsi dalam kod pengaturcaraan
function kiraTempohTempahan($masaMula, $masaTamat)

{

$tempoh = striotime($masaTamat) - strtotime($masaMula);
$jam = $tempoh / 3600; // Tukar ke jam
return $jam;

}

// Memanggil fungsi

$jumlahJam = kiraTempohTempahan('09:00", "12:30");

echo "Jumlah tempoh tempahan adalah " . $jumlahJam . " jam.";
2>

Kelas

Kelas merupakan struktur yang menggabungkan maklumat (atribut) dan kaedah
(method) dalam satu unit yang mewakili satu komponen di dalam pengaturcaraan
berorientasikan objek. Data disimpan sebagai atribut yang kekal di dalam kelas
sehingga nilainya diubah melalui arahan atau logik lain. Kaedah pula merupakan
fungsi yang didefinisikan dalam kelas dan digunakan untuk melaksanakan sesuatu
operasi tertentu. Perbezaan di antara kelas dan fungsi ialah ia menyimpan data
secara kekal dalam bentuk atribut bersama fungsi atau kaedah yang berkaitan,
manakala fungsi pula hanya melaksanakan satu tugasan tertentu dengan hanya
menyimpan data secara sementara. Contoh:

<2php

// Penggunaan kelas dalam kod pengaturcaraan
class BilikMesyuarat {
public $nama;
public $kapasiti;

public function __construct($nama, $kapasiti) {
$this->nama = $nama;
$this->kapasiti = $kapasiti;

public function info() {
return "Bilik " . $this->nama . " boleh memuatkan " . $this->kapasiti . " orang.";

}

// Membina objek daripada kelas

$ruangA = new BilikMesyuarat("Bilik Mesyuarat Melur", 40);
echo $ruangA->info();

2>



n)

Struktur Data (Data Structure)

Struktur data ialah kaedah untuk menyimpan dan menyusun maklumat atau data
di dalam kod pengaturcaraan supaya ia dapat diakses dan digunakan dengan
mudah dan berkesan. Antara kaedah-kaedah struktur data adalah seperti berikut:

i) Array / List

Array atau list merupakan susunan elemen yang diindeks secara berturutan.
Kaedah struktur data ini adalah sesuai untuk menyimpan koleksi data yang
mempunyai turutan yang tetap. Contoh:

<¢php

$bilanganHari = [1, 2, 3, 4, 5]; // Kaedah array atau
list

$senaraiNama = ["Ahmad", 'Siti", "Ali"];  // Kaedah array atau
list

2>

ii) Kamus (Dictionary)

Kamus merupakan struktur data yang menyimpan pasangan kekunci dengan
nilai tertentu. Kaedah ini mampu untuk meningkatkan prestasi sistem oleh
kerana ia membolehkan pencarian data dilakukan secara terus tanpa perlu
menyemak setiap satu elemen dalam struktur data. Contoh:

<¢php

// Penggunaan kaedah kamus

$kamusBilikMesyuarat = |
"BMO01" => "Bilik Mesyuarat Melur",
"BM002" => "Bilik Mesyuarat Cempaka”,
"BM003" => "Bilik Mesyuarat Kenanga",
"BM004" => "Bilik Mesyuarat Melati"
"BMO005" => "Bilik Mesyuarat Mawar"
"BMO06" => "Bilik Mesyuarat Tulip"
"BMO007" => "Bilik Mesyuarat Sakura"

2>



5.6.6 RANGKA KERJA PENGATURCARAAN (PROGRAMMING FRAMEWORK)

Rangka kerja pengaturcaraan merupakan satu set tools, libraries dan peraturan yang
menyediakan asas-asas bagi melaksanakan aktiviti pengaturcaraan secara teratur dan
bersistematik. Rangka kerja ini menyediakan kod sedia ada (pre-built code) dan struktur
pengekodan vyang teratur bertujuan untuk memudahkan proses pengaturcaraan,
penyelenggaraan dan penambahbaikan aplikasi. Jenis rangka kerja pengaturcaraan
merangkumi front end, back end, dan full stack yang digunakan dalam pembangunan sistem.

a) Rangka Kerja Front-End

Rangka kerja front-end diguna pakai untuk membangunkan antaramuka pengguna
sesebuah sistem aplikasi dengan lebih cekap dan teratur. Rangka kerja ini
memudahkan pembangunan komponen-komponen visual, interaksi dan maklum
balas terhadap input pengguna secara dinamik. Antara contoh rangka kerja front
end yang sering digunakan adalah seperti React, Angular, dan Vue.js.

b) Rangka Kerja Back-End

Rangka kerja back-end digunakan untuk membangunkan logik server, pengurusan
pangkalan data serta penyediaan APl bagi menyokong fungsi-fungsi sistem
aplikasi. Rangka kerja ini memudahkan pengurusan data, keselamatan dan
komunikasi di antara pelayan dengan komponen lain dengan lebih efisien. Antara
contoh rangka kerja back-end yang sering digunakan ialah seperti Django
(Python), Spring (Java), Express.js (JavaScript), dan Laravel (PHP).

c) Rangka Kerja Full Stack

Rangka kerja full stack dipakai untuk membangunkan sistem aplikasi yang
merangkumi kedua-dua aspek front-end dan back-end secara menyeluruh.
Rangka kerja ini membolehkan pengaturcara membina antaramuka pengguna
bersekali dengan logik server dan pengurusan pangkalan data dalam satu platform
yang sama. Antara contoh rangka kerja full stack yang popular adalah seperti
Meteor.js, Next.js, dan Laravel yang juga menyokong pembangunan secara full
stack.

Penggunaan rangka kerja dalam pembangunan perisian menawarkan pelbagai manfaat yang
membantu menjadikan proses kerja lebih teratur dan meningkatkan kualiti hasil pembangunan.
Berikut merupakan kelebihan penggunaan rangka kerja pengaturcaraan, iaitu:

a) Mempercepatkan proses pembangunan dan meningkatkan keselamatan dengan
komponen dan fungsi yang sedia ada (built in).

b)  Menyediakan standard dan struktur yang konsisten dalam pengekodan.



Memudahkan penyelenggaraan dan pengemaskinian sistem.
Membantu dalam pengurusan dan pengujian kod yang lebih teratur.

Menyokong pembangunan aplikasi yang bersifat kebolehskalaan (scalable) dan
fleksibel.

Memperkasa kerjasama di antara ahli pasukan dengan penggunaan konvensyen,
gaya dan cara pengekodan yang seragam.

5.6.7 AMALAN TERBAIK PENGATURCARAAN

Amalan terbaik pengaturcaraan merujuk kepada standard, panduan, prinsip, dan teknik yang
membantu pengaturcara menulis kod yang bersih (clean), efisien, mudah difahami, dan mudah
diselenggara. la bertujuan untuk memastikan perisian yang dibangunkan adalah berkualiti
tinggi, bebas daripada ralat kritikal, dan mampu bertahan lama walaupun melalui proses
pengemaskinian perisian (software updates).

a)

b)

Kebolehbacaan Kod Pengaturcaraan

Kebolehbacaan kod pengaturcaraan adalah aspek penting dalam pembangunan
sistem bagi memastikan kod yang ditulis mudah untuk difahami serta tersusun
dengan kemas. Kod-kod pengaturcaraan yang jelas memudahkan proses
pengurusan, penyelenggaraan, serta melancarkan proses pengesanan,
pengecaman, dan pembaikan ralat. Antara amalan terbaik untuk meningkatkan
kebolehbacaan kod adalah seperti berikut:

i) Inden yang konsisten bagi memastikan struktur kod mudah dibaca dan
difahami.

ii) Penetapan nama pemboleh ubah yang bermakna supaya jelas untuk dikenal
pasti oleh pengaturcara lain.

iii)  Penulisan komen yang ringkas dan padat pada setiap fungsi dan bahagian
kod yang memerlukan penerangan lanjut.

iv)  Menulis baris kod yang tidak terlalu panjang dengan memecahkan kod ke
baris seterusnya supaya meningkatkan kebolehbacaan.

Pematuhan Piawaian dan Konvensyen

Pematuhan kepada piawaian dan konvensyen membantu memastikan kod yang
dihasilkan adalah selaras, konsisten, dan mudah difahami oleh semua ahli
pasukan. Dengan mengikuti piawaian dan konvensyen yang telah ditetapkan,
kualiti kod dapat dipertingkatkan serta memudahkan proses penyelenggaraan.

i) Konvensyen penamaan yang konsisten seperti penggunaan gaya
lowercase, camelCase, dan PascalCase penting untuk memastikan nama
pemboleh ubah dan fungsi mudah dikenali dan difahami. Gaya lowercase
biasanya digunakan untuk nama fail atau URL, camelCase pula untuk



d)

pemboleh ubah dan fungsi, manakala PascalCase digunakan bagi
menamakan kelas. Penggunaan konvensyen yang selaras membantu
mengekalkan standard kod dan mengurangkan sebarang kekeliruan di
kalangan pengaturcara.

Pematuhan kepada piawaian pengaturcaraan khusus seperti PHP Standard
Recommendation (PSR) dan Python Enhancement Proposal (PEP) adalah
mustahak bagi memastikan kualiti kod yang dihasilkan menepati kepada
standard industri, serta memudahkan integrasi dan kolaborasi di antara
pasukan pembangun yang lain.

Pelaksanaan Kawalan Versi

i)

Kawalan versi ialah proses mengesan dan mengurus perubahan kepada kod
sumber menggunakan perisian kawalan versi. Contohnya seperti Git,
Tortoise dan lain-lain.

Kawalan versi akan membolehkan pengaturcara untuk bekerja secara
kolaboratif dan memastikan setiap perubahan dicatat dengan mesej yang
jelas.

Penggunaan kawalan versi membolehkan aktiviti-aktiviti pengaturcaraan
bagi fungsi-fungsi sistem dilakukan secara berasingan dan kemudiannya
diuji terlebih dahulu sebelum ia digabungkan untuk proses pembangunan
seterusnya.

Kawalan versi membolehkan kod sumber dapat dikembalikan (rollback)
kepada versi terdahulu sekiranya terdapat sebarang masalah yang timbul
setelah kod tersebut diterbitkan.

Mempraktikkan Prinsip DRY

)

DRY bermaksud Don't Repeat Yourself, iaitu prinsip yang menekankan
kepada penggunaan semula kod-kod pengaturcaraan melalui kaedah
modularisasi bagi mengelakkan sebarang penulisan kod secara berulang.

Pembahagian kod pengaturcaraan kepada fungsi atau kelas yang boleh
digunakan semula dalam fail-fail pengaturcaraan lain bertujuan untuk
mengurangkan kerumitan dalam pengurusan kod apabila berlaku perubahan
pada logik, struktur, atau sintaks.

Mengelakkan Over-Engineering

i)

Over-engineering merujuk kepada amalan pembangunan sistem
menggunakan penyelesaian (solution) yang terlalu kompleks berbanding
dengan keperluan yang telah diperolehi.



Amalan over-engineering berpotensi untuk mempengaruhi kesejahteraan
satu-satu projek pembangunan sistem, khususnya kepada pengurusan
masa, kos dan sumber manusia, serta boleh menambahkan kerumitan kod-
kod pengaturcaraan yang perlu dihasilkan.

5.6.8 AMALAN PENGATURCARAAN SELAMAT

Amalan pengaturcaraan selamat merujuk kepada pendekatan dan teknik pengaturcaraan
yang bertujuan untuk melindungi aplikasi daripada kelemahan keselamatan (security
vulnerability). Amalan ini membantu untuk mengurangkan risiko berlakunya serangan siber,
contohnya seperti SQL injection, Cross Site Scripting (XSS), dan kecurian data, dengan
memastikan kod-kod pengaturcaraan ditulis mengikut amalan keselamatan yang terbaik.
Berikut adalah beberapa kategori amalan pengekodan selamat yang boleh diamalkan oleh
pengaturcara:

a)

b)

Validasi Input dan Output

)

ii)

Memastikan setiap data yang diterima (input) dan setiap data yang
dipaparkan (output) oleh sistem adalah sah, selamat, dan tidak mengandungi
elemen berbahaya seperti skrip, kod SQL, atau karakter khas yang boleh
dieksploitasi.

Penggunaan validasi input melalui kaedah whitelist dalam pengaturcaraan
adalah kritikal bagi memastikan hanya data-data yang dibenarkan sahaja
boleh dijadikan sebagai input kepada sistem. Validasi input juga dapat dibuat
dengan mengikut jenis data (data type) dan format yang telah ditentukan,
contohnya seperti integer, float, string, ataupun format seperti e-mel, nombor
telefon dan nombor kad pengenalan.

Validasi output juga boleh dilakukan dengan mensanitasi data sebelum ia
dipaparkan kepada pengguna di dalam sistem, contohnya seperti
menggunakan fungsi htmispecialchars() di dalam bahasa pengaturcaraan
PHP bagi mengelakkan risiko seperti serangan XSS.

Pengurusan Sesi

i)

Pengurusan sesi (session management) ialah proses mengurus identiti dan
aktiviti pengguna semasa mereka melayari sistem. sambungan mereka
dengan aplikasi, Proses ini termasuk pengwujudan, penyimpanan, dan
penamatan sesi secara selamat, bagi menjamin keselamatan maklumat,
kestabilan sistem, serta pengesahan identiti pengguna.

Antara fungsi pengurusan sesi adalah seperti menyimpan data pengguna
(contohnya ID pengguna dan tahap akses), mengekalkan status log masuk,
mencegah akses tanpa kebenaran dan menyediakan mekanisme untuk log
keluar secara automatik (timeout).



c)

d)

e)

Pengurusan Kata Laluan

i)

Pengurusan kata laluan (password management) ialah proses memastikan
maklumat kata laluan pengguna disimpan, digunakan dan diuruskan secara
selamat untuk mengelakkan akses tidak sah dan kebocoran data.

Amalan terbaik dalam pengurusan kata laluan melibatkan juga (dan tidak
terhad) kepada penyimpanan aksara dalam bentuk hash yang selamat
dengan menggunakan algoritma yang kukuh, contohnya seperti bcrypt atau
Argon2. Selain dari merangkumkan elemen penyimpanan aksara yang
selamat, pelaksanaan polisi kata laluan yang kukuh juga dapat
memperkasakan lagi tahap sekuriti sistem secara keseluruhan, contohnya
seperti penetapan kata laluan yang tidak kurang dari 12 aksara dengan
gabungan huruf besar, huruf kecil, nombor dan simbol khas.

Kawalan Muat Naik dan Turun Fail

Muat naik dan turun fail ialah proses membolehkan pengguna mengedar atau
memperolehi semula fail melalui dalam talian. Pengendalian proses ini secara
selamat adalah penting bagi mencegah eksploitasi, kebocoran maklumat, atau
serangan terhadap pelayan. Antara amalan terbaik bagi pengurusan fail adalah
dengan:

i)

i

ii)

Melaksanakan proses validasi jenis fail (contohnya dalam format .pdf, .jpg,
.docx) dan menetapkan had saiz maksimum fail yang dibenarkan,

Menyimpan fail yang dimuat naik ke dalam direktori khas yang diasingkan
daripada direktori sistem atau root aplikasi bagi mengurangkan risiko akses
secara terus melalui pelayar dan mengelakkan serangan seperti path
traversal, dan

Menamakan semula fail secara rawak bagi mengelakkan penggodam
merujuk nama fail yang terpapar untuk menjangka nama fail lain dan
mengaksesnya secara terus.

Kriptografi

i)

Kriptografi ialah teknik keselamatan yang digunakan untuk melindungi data
dengan mengamalkan kaedah penyulitan kepada maklumat-maklumat
sensitif agar tidak dapat difahami oleh pihak yang tidak dibenarkan. la
memainkan peranan penting dalam memastikan kerahsiaan, integriti dan
kelestarian data dalam sistem aplikasi tidak tergugat.

Amalan terbaik bagi pelaksanaan kriptografi termasuklah menggunakan
algoritma penyulitan moden contohnya seperti Advanced Encryption
Standard (AES) untuk data rahsia, dan Rivest-Shamir—-Adleman (RSA)
untuk mekanisme berasaskan kunci awam. Penggunaan algoritma lapuk,



f)

contohnya seperti Message Digest Algorithm 5 (MD5) dan Secure Hash
Algorithm 1 (SHA-1), haruslah dielakkan oleh kerana telah diketahui umum,
mempunyai pelbagai kelemahan dari segi keselamatan, dan tidak lagi
dianggap sebagai selamat.

Log dan Audit

Log dan audit ialah mekanisme yang digunakan untuk merekod, mengesan, dan
menganalisis aktiviti sistem aplikasi, seperti interaksi pengguna dan perubahan
data, termasuk aktiviti-aktiviti yang mencurigakan. Mekanisme ini adalah penting
bagi tujuan pemantauan keselamatan, pengesanan ralat yang boleh menjejaskan
sekuriti sistem, dan penyiasatan ke atas insiden keselamatan siber. Amalan terbaik
bagi pengurusan log dan audit adalah seperti berikut:

i) merekod keseluruhan aktiviti utama sistem.

i) menyimpan log tersebut di lokasi yang selamat.

iii). mengehadkan akses kepada log hanya kepada pegawai yang diberikan
kebenaran.

iv) memantau log secara berkala dan menetapkan tempoh simpanan log.



5.7 PENGUJIAN SISTEM [F4.3]

5.7.1 KETERANGAN

Pengujian Sistem merupakan aktiviti verifikasi yang dilakukan terhadap komponen atau sistem
(test object) untuk memastikan ia dibangunkan berdasarkan kepada spesifikasi keperluan
dan reka bentuk sistem. Pengujian sistem merangkumi pelbagai peringkat ujian sebelum
sistem diuji secara komprehensif di dalam fasa pengujian penerimaan. Semasa pengujian ini
dilaksanakan, ralat yang dikesan akan diperbetulkan dan unit/komponen/modul yang berkaitan
akan diuji semula sehingga ralat berjaya diperbaiki.

Jenis-jenis pengujian yang dijalankan adalah pengujian keperluan fungsian, pengujian
keperluan bukan fungsian (kualiti) serta verifikasi terhadap ralat yang telah dibaiki.

Penguijian ini akan dilaksanakan oleh Pasukan Pembangun Sistem.

Peringkat-peringkat ujian yang dilaksanakan mengikut turutan adalah seperti rajah di bawah.

Modul Tempahan
-’ N

SISTEM TEMPAHAN FASILITI
(/
Modul Tempahan \

[N —————

\
1
1
1
1
(!
1

\ /

e
Modul Log Masuk Modul Log Masuk f
7z ™~ 7z

= \

e

1 1 I
1 ‘ ! 1 Y | :
[ . [ 1 I \
1 1
1 1 1 I
1 | 59 | | :
| : ;U | - ! ; — !
— \ — " \ 7 \}\ ______ iy 3
AR A S e———— i
Ujian unit’komponen  Ujian sub-sistem/modul Ujian integrasi Ujian Sistem
low-level-test high-level-test

Rajah 5.3 : Peringkat Pengujian Sistem

Terdapat dua jenis pendekatan pengujian yang digunakan semasa melaksanakan pengujian
ke atas sistem aplikasi iaitu big bang testing dan incremental testing. Big bang testing
merupakan pengujian yang dilaksanakan terhadap sistem aplikasi yang telah lengkap
dibangunkan, manakala incremental testing merupakan satu bentuk ujian modul di mana
modul yang akan diuji digabungkan dengan modul yang sudah diuji.

Pendekatan bagi aktiviti pengujian ini dikenali sebagai incremental testing iaitu pengujian
dilakukan secara berperingkat bermula daripada pengujian unit’/komponen terkecil sistem
aplikasi seperti fungsi, kelas, prosedur dan antara muka (Ujian unit/komponen); diikuti
dengan ujian modul (Ujian sub-sistem/modul); seterusnya menguji dua atau lebih
modul/sistem/elemen perkakasan yang disepadukan (Ujian integrasi); dan akhirnya semua
modul yang terlibat diuji secara menyeluruh (Ujian sistem).



Pendekatan ini menerangkan bahawa ujian tahap rendah (low-level-test) perlu dilaksanakan
terlebih dahulu bertujuan untuk mengesahkan bahawa ujian segmen kod sumber telah
dilaksanakan dengan betul sebelum ke peringkat ujian berikutnya iaitu, ujian tahap tinggi
(high-level test) yang bertujuan mengesahkan fungsi-fungsi utama sistem aplikasi.

Bagi setiap peringkat pengujian, terdapat empat (4) elemen yang perlu ditetapkan sebelum
pelaksanaan ujian iaitu:

a) Entry Criteria boleh merujuk kepada dokumen, status/ aktiviti serta tahap
pencapaian atau pengukuran yang menjadi pra-syarat untuk melaksanakan
sesuatu peringkat pengujian.

b)  Aktor merujuk kepada individu/kumpulan yang terlibat dengan sesuatu ujian.
c) Aktiviti ialah aktiviti yang perlu dijalankan semasa ujian.

d)  Exit Criteria pula merujuk kepada dokumen, status/aktiviti serta tahap pencapaian
atau pengukuran yang menjadi syarat untuk menamatkan sesuatu peringkat
pengujian

5.7.2 OBJEKTIF

Menilai kualiti keseluruhan sistem selepas pembangunan bagi memastikan sistem aplikasi
yang dibangunkan sedia untuk diuji di peringkat pengujian penerimaan pengguna.

5.7.3 LANGKAH-LANGKAH

Langkah 1 : Laksana Ujian Unit/Komponen

a) Tetapkan elemen Entry Criteria, aktor, aktiviti dan Exit Criteria bagi Ujian Unit/
Komponen seperti jadual di bawah:

Jadual 5.2 : Entry Criteria dan Exit Criteria bagi Ujian Unit/Komponen

Entry Criteria | i. Dokumen SRS dan SDS telah disahkan

ii. Kod sumber bagi unit/komponen telah selesai dibangunkan/ telah
diperbaiki bagi tujuan re-test

ii. Unit/lkomponen untuk diuji serta stubs/drivers yang diperlukan telah
disediakan dalam persekitaran pembangunan

Aktor Pasukan Pembangun Sistem

Aktiviti i. Pasukan Pembangun Sistem melaksanakan ujian unit/komponen
ii. Pembetulan kod sumber dilakukan bagi ujian yang gagal.

iii. Pengujian semula dilaksanakan bagi ujian yang gagal




Exit Criteria | i. Senarai semak hasil ujian menunjukkan unit’/komponen berjaya

melaksanakan fungsian atau bukan fungsian seperti yang telah
ditetapkan

ii. Ralat telah berjaya dibaiki

c)

Kenalpasti unit’/komponen adalah bahagian terkecil di dalam sistem aplikasi yang
boleh diuji (testable) seperti fungsi, kelas, prosedur dan antara muka.

Sediakan stubs dan drivers yang diperlukan di dalam ujian unit/komponen bagi
menggantikan unit/ komponen/modul yang perlu semasa berinteraksi dengan
unittkomponen yang diuji. Stubs adalah simulasi (dummy module) bagi
menggantikan unit/komponen selepas (subordinate/ lower level) unit/komponen
yang diuji. Drivers pula adalah simulasi bagi menggantikan unit/komponen
sebelum (upper level) unit/komponen yang diuji. Rajah di bawah menunjukkan
gambaran penggunaan stubs dan drivers di dalam ujian unit/komponen.

M1 Unit / komponen
yang diuji

I

M8 Unit/
komponen
yang diuji

Rajah 5.4 : Ujian Komponen - Stubs dan Drivers

Laksana ujian unit/komponen bagi memastikan kod program yang dibangunkan
memenuhi fungsi unit/komponen dan mengenal pasti ralat di dalam unit/komponen
berkenaan. Ujian ini juga hendaklah merangkumi ujian fungsian dan ujian bukan
fungsian.

Rujuk asas ujian (fest basis) yang berkaitan iaitu spesifikasi keperluan
unit’/komponen, dokumen reka bentuk terperinci seperti SRS atau SDS dan kod
sumber program semasa melaksanakan ujian bagi memastikan ianya memenuhi
keperluan dan reka bentuk unit/ komponen yang telah ditetapkan.

Guna kombinasi teknik pengujian yang bersesuaian seperti teknik white-box
testing dan juga black box testing. White-box testing merupakan teknik pengujian
yang terperinci yang dilakukan terhadap logik dalam dan struktur kod. Teknik ini
memerlukan penguji mempunyai pengetahuan penuh tentang kod sumber.
Manakala black box testing pula merupakan teknik pengujian berdasarkan kepada
spesifikasi sistem aplikasi. Pengujian ini dilaksanakan dengan memasukan input
dan output akan diperiksa sama ada memenuhi fungsi yang telah ditetapkan atau
tidak.



g) Uji pengendalian ralat (error handling) sekiranya input yang tidak sah diberikan.

h)  Baiki ralat yang ditemui dan uji semula unit’/komponen berkenaan. Pengujian akan
dilaksanakan sehingga unit/ komponen memenuhi Exit Criteria yang telah
ditetapkan untuk ke peringkat ujian seterusnya iaitu Ujian Sub-Sistem/Modul.

Langkah 2 : Laksana Ujian Sub-Sistem/Modul

a) Tetapkan elemen Entry Criteria, aktor, aktiviti dan Exit Criteria bagi Ujian Sub-
Sistem/Modul seperti jadual di bawah:

Jadual 5.3 : Entry Criteria dan Exit Criteria bagi Ujian Sub-Sistem/Modul

Entry Criteria | i. Ujian unit’/komponen telah dilaksanakan dengan sempurna

ii. Defects/bugs yang dilaporkan dalam ujian unit/komponen telah
diperbaiki dan diuji semula

iii. Test script dan test data bagi ujian sub-sistem/modul telah
disediakan oleh Pasukan Pembangun Sistem

Aktor Pasukan Pembangun Sistem

Aktiviti i. Pasukan Pembangun Sistem melaksanakan ujian sub-sistem/modul
ii. Pembetulan dilakukan bagi ujian sub-sistem/modul yang gagal

iii. Pengujian semula dilaksanakan bagi ujian yang gagal

EXxit Criteria i. Test script telah diuiji

ii. Senarai semak hasil ujian menunjukkan sub-sistem/modul berjaya
melaksanakan fungsian atau bukan fungsian seperti yang telah
ditetapkan

ii. Ralat telah berjaya dibaiki

b) Sediakan test data, bangunkan test script berdasarkan pertimbangan di bawah
bagi memastikan ujian sub-sistem/modul dilaksanakan dengan berkesan:

i) Module Interface Test: bertujuan untuk menguji maklumat yang masuk dan
keluar daripada modul;

ii)  Local data structures: Struktur data tempatan diperiksa untuk memastikan
data yang disimpan secara sementara dapat mengekalkan integritinya
semasa pelaksanaan algoritma.

iii)  Boundary conditions: bertujuan untuk memastikan modul beroperasi dengan
betul di sempadan yang ditetapkan (to limit or restrict processing).



iv)  Independent paths: bertujuan untuk menguji semua independent paths yang
melalui struktur kawalan bagi memastikan bahawa semua kenyataan dalam
modul telah dilaksanakan sekurang-kurangnya sekali.

v)  Error handling paths: untuk memastikan ralat ditangani dengan betul dan
error handling paths yang dikenalpasti dapat digunakan selepas melepasi
beberapa siri ujian.

c) Laksanakan ujian sub-sistem/modul untuk menguji interaksi di antara
unit/komponen dalam modul bagi memastikan ianya dapat berfungsi secara
kolektif bagi fungsi, kelas, prosedur dan antara muka yang terlibat di dalam
sesebuah modul.

d)  Uji setiap modul yang terdapat dalam sistem aplikasi secara berasingan sebelum
ianya diuji secara bersepadu di peringkat ujian integrasi.

Langkah 3 : Laksana Ujian Integrasi

a) Tetapkan elemen Entry Criteria, aktor, aktiviti dan Exit Criteria bagi Ujian Integrasi
seperti jadual di bawah:

Jadual 5.4 : Entry Criteria dan Exit Criteria bagi Ujian Integrasi

Entry Criteria | i. Ujian sub-sistem/modul telah dilaksanakan dengan sempurna

ii. Defects/bugs yang dilaporkan dalam ujian sub-sistem/modul telah
diperbaiki dan diuji semula

iii. Sistem/antara muka sistem luar telah sedia diintegrasi dengan
sistem yang diuji (SUT).

iv. Test script dan test data bagi ujian integrasi telah disediakan oleh
Pasukan Pembangun Sistem

v. Penguji Integrasi telah diberikan penerangan

Aktor i. Pasukan Pembangun Sistem

ii. Penguji Integrasi

Aktiviti i. Penguji integrasi melaksanakan ujian integrasi
ii. Penguji integrasi merekodkan hasil ujian
iii. Pembetulan dilakukan bagi ujian integrasi yang gagal

iv. Pengujian semula dilaksanakan bagi ujian yang gagal

Exit Criteria i. Test script telah diuji




ii. Senarai semak hasil ujian ujian menunjukkan integrasi berjaya
melaksanakan fungsian atau bukan fungsian seperti yang telah
ditetapkan

iii. Ralat telah berjaya dibaiki

b)  Sediakan test data, bangunkan test script bagi memastikan ujian sub-sistem/modul
dilaksanakan dengan berkesan. Objek yang akan dinilai semasa ujian integrasi
adalah sub-sistem, pangkalan data, infrastruktur, antara muka serta konfigurasi
sistem. Bagi tujuan ini, Pasukan Pembangun Sistem hendaklah mempunyai
kefahaman yang jelas terhadap reka bentuk dan keperluan integrasi sebelum ujian
ini dilaksanakan.

c) Laksanakan ujian integrasi yang merangkumi ujian fungsian dan ujian bukan
fungsian bagi menguiji perkara berikut:

i) interaksi di antara sub-sistem/modul dalam sistem aplikasi;

i) interaksi dalaman di antara sistem operasi, fail sistem dan API perkakasan
sistem; DAN

iii)  integrasi di antara sistem yang dibangunkan dengan sistem luaran/antara

muka luaran (sekiranya ada).

d)  Rujuk asas ujian (test basis) yang berkaitan iaitu reka bentuk dan arkitektur sistem
serta dokumen D02 Spesifikasi Keperluan Bisnes.

e) Laksanakan ujian integrasi dalam beberapa sesi mengikut keperluan integrasi

yang wujud dalam sistem aplikasi sehingga memenuhi Exit Criteria yang telah
ditetapkan untuk ke peringkat ujian seterusnya iaitu Ujian Sistem.

Langkah 4 : Laksana Ujian Sistem

a) Tetapkan elemen Entry Criteria, aktor, aktiviti dan Exit Criteria bagi Ujian Sistem
seperti jadual di bawah:

Jadual 5.5 : Entry Criteria dan Exit Criteria bag Ujian Sistem

Entry Criteria | 1) Ujian integrasi telah dilaksanakan dengan sempurna

2) Defects/bugs yang dilaporkan dalam ujian integrasi telah
diperbaiki. Tiada lagi defects/bugs bagi:

a) Priority High atau Medium; dan
b) Severity Blocking, Critical, dan Major
3) SUT telah disediakan di dalam persekitaran pengujian.




4) Test script dan test data bagi ujian sistem telah disediakan oleh
Pasukan Pembangun Sistem

Aktor

Pasukan Pembangun Sistem

Aktiviti 1. Pasukan Pembangun Sistem melaksanakan ujian sistem

Pasukan Pembangun Sistem merekodkan hasil ujian

Pembetulan dilakukan bagi ujian yang gagal

oD

Pengujian semula dilaksanakan bagi ujian yang gagal

Exit Criteria a) Test script telah diuji

b) Hasil ujian menunjukkan sistem berjaya melaksanakan fungsian
atau bukan fungsian seperti yang telah ditetapkan.

c) Sistem telah berjaya memenuhi keperluan bisnes dan keperluan
fungsian

d) Ralat telah berjaya dibaiki

Sediakan test data, bangunkan test script bagi memastikan ujian sistem
dilaksanakan dengan berkesan.

Laksanakan ujian sistem untuk menentukan keseluruhan sistem aplikasi telah
memenuhi spesifikasi yang ditetapkan sebelum ke fasa pengujian penerimaan.
Walaubagaimanapun, ujian ini sebaik-baiknya dilaksanakan di dalam persekitaran
yang hampir sama dengan persekitaran sebenar (staging/pre-production).

Rujuk dokumen spesifikasi keperluan, proses bisnes, Use Case, laporan analisis
risiko, interaksi sistem dengan sistem operasi dan system resources semasa

melaksanakan ujian sistem.

Laksanakan ujian sistem sehingga memenuhi Exit Criteria yang telah ditetapkan.

Langkah 5 : Sediakan Laporan Ujian Sistem

a)

b)

Sediakan Laporan Ujian Sistem sebagai pengesahan aktiviti Pengujian Sistem
telah dilaksanakan sepenuhnya. Laporan Ujian Sistem menentukan tahap
kesediaan sistem dan merupakan Entry Criteria kepada Ujian Penerimaan
Pengguna. Format Laporan Ujian Sistem adalah seperti D11 Laporan Ujian
Sistem.

Laporan Ujian Sistem hendaklah mempunyai sekurang-kurangnya elemen
berikut:



Jadual 5.6 : Format Laporan Ujian Sistem

Bil. | Item Keterangan
1 Pengenalan | Penerangan berkaitan tujuan pelaporan dan skop pelaporan. Skop
pelaporan boleh berdasarkan sistem atau modul (sekiranya sistem
adalah berskala besar dan mempunyai kompleksiti yang tinggi).
2 Aktiviti Serahan
Pengujian Menerangkan bilangan modul/submodul yang terlibat, status lulus

dan gagal, serta keterangan yang berkaitan dengannya.

Bil Modul & Sub Status Pengujian Keteranaan
Modul (Lulus/Gagal/KIV) g
1 Modul Personel | Lulus Selesai
Modul Gaji KIV 2 modul masih KIV
untuk pengujian
Modul Lulus Selesai
Pelaporan

Rumusan Serahan

Ringkasan kepada aktiviti pengujian sistem yang telah dilakukan
berdasarkan sistem atau modul yang diuji.

Sekiranya rumusan adalah diperingkat sistem, maka bilangan yang
digunakan adalah bilangan modul. Bagi peringkat modul, bilangan
yang digunakan adalah bilangan submodul.

Contoh:
Bil | BN
Bil Modul L Gagal/ Keterangan
ulus KIV
1 Modul Personel 5 0 Selesai
2 | Modul Gaji 5 2 2 submodul KIV
kerana terdapat isu
compliance
3 Modul Pelaporan 5 1 Submodul Business
Intelligence tidak diuji
untuk unstructured
data
Jumlah 15 3
Peratus Lulus/ 83.33 | 16.67
Gagal/ KIV




Dokumen
Sokongan

Menyatakan dokumen sokongan yang dirujuk berkaitan dengan
Laporan Ujian Sistem yang boleh digunakan oleh pemilik sistem untuk
mengesahkan pelaksanaan Ujian Sistem.

Contoh:
Senarai nama penguji, modul/sub-modul yang terlibat dan tarikh
selesai pengujian.




RUJUKAN

vii)

viii)

Xi)

xii)

xiil)

Software Engineering: A Practitioner's Approach Eighth Edition, Roger S. Pressman,
Ph.D, Bruce R. Maxim, Ph.D, Mc Graw Hill Education.

Software Quality Assurance From theory to implementation, G. Daniel.
Certified Tester Foundation Level Syllabus Version 2018.

Certified Tester Advanced Level Syllabus Test Analyst Version 2012
Oracle Database SQL Language Reference, 11g Release 2 (11.2).
MySQL 5.7 Reference Manual.

MongoDB 8.0 Reference Manual.

General Software Development Standard and Guidelines Version 3.5 - Science Infusion
Software Engineering Process Group (SISEPG).

Java Language Coding Standard - Sun Microsystem.

Sun Microsystems. (Year). Java Language Coding Standard. Diperoleh daripada
https://www.oracle.com/java/technologies/javase/codeconventions-contents.html

PHP Framework Interop Group. (2019). PHP Standard Recommendation (PSR).
Diperoleh daripada https://www.php-fig.org/psr/

Python Software Foundation. (2001). PEP 8 — Style Guide for Python Code. Diperoleh
daripada https://www.python.org/dev/peps/pep-0008/

OWASP Foundation. (2023). OWASP Secure Coding Practices - Quick Reference
Guide. Diperoleh daripada https://owasp.org/




